The code below
I would run it by setting syllables to something like ['XXXX']
Then you see the list of words printed out, there might be more than 1 segment depending how long your audio is.
Then copy the printed words all together and break them into your own syllables (manually) and then set syllables variable to that list and rerun the program so that it breaks it using your manually defined syllables.
Result video shown here: https://www.youtube.com/shorts/3EAT2BO8C_0
# here's the code ------------------
import torch
import torchaudio
from datetime import timedelta
from dataclasses import dataclass
from srt import Subtitle, compose
import whisper
from pydub import AudioSegment
import re
import num2words
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
torch.random.manual_seed(0)
#HACK HERE INSTEAD
syllables = ['WHAT',
'HAP',
'PENS',
'IF',
'YOU',
'TAKE',
'SPEECH',
'AU',
'DIO',
'CLIP',
'GET',
'A',
'TIME',
'TRAN',
'SCRIPT',
'FOR',
'EACH',
'SYL',
'LA',
'BLE',
'NOT',
'WORDS',
'THEN',
'PLAY',
'A',
'MU',
'SI',
'CAL',
'NOTE',
'THAT',
'CLO',
'SEST',
'MATCH',
'EACH',
'SYL',
'LA',
'BLE',
'YOU',
'RE',
'LIS',
'TE',
'NING',
'TO',
'THE',
'RE',
'SULT',
'RIGHT',
'NOW']
syllablei = 0
def force_align(SPEECH_FILE, transcript, start_index, start_time):
global syllables,syllablei
bundle = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H
model = bundle.get_model().to(device)
labels = bundle.get_labels()
with torch.inference_mode():
waveform, _ = torchaudio.load(SPEECH_FILE)
emissions, _ = model(waveform.to(device))
emissions = torch.log_softmax(emissions, dim=-1)
emission = emissions[0].cpu().detach()
dictionary = {c: i for i, c in enumerate(labels)}
default_token = 0;#default_token = 'A';
#tokens = [dictionary[c] for c in transcript]
tokens = [dictionary.get(c, default_token) for c in transcript]
def get_trellis(emission, tokens, blank_id=0):
num_frame = emission.size(0)
num_tokens = len(tokens)
# Trellis has extra diemsions for both time axis and tokens.
# The extra dim for tokens represents <SoS> (start-of-sentence)
# The extra dim for time axis is for simplification of the code.
trellis = torch.empty((num_frame + 1, num_tokens + 1))
trellis[0, 0] = 0
trellis[1:, 0] = torch.cumsum(emission[:, 0], 0)
trellis[0, -num_tokens:] = -float("inf")
trellis[-num_tokens:, 0] = float("inf")
for t in range(num_frame):
trellis[t + 1, 1:] = torch.maximum(
# Score for staying at the same token
trellis[t, 1:] + emission[t, blank_id],
# Score for changing to the next token
trellis[t, :-1] + emission[t, tokens],
)
return trellis
trellis = get_trellis(emission, tokens)
@dataclass
class Point:
token_index: int
time_index: int
score: float
def backtrack(trellis, emission, tokens, blank_id=0):
# Note:
# j and t are indices for trellis, which has extra dimensions
# for time and tokens at the beginning.
# When referring to time frame index `T` in trellis,
# the corresponding index in emission is `T-1`.
# Similarly, when referring to token index `J` in trellis,
# the corresponding index in transcript is `J-1`.
j = trellis.size(1) - 1
t_start = torch.argmax(trellis[:, j]).item()
path = []
for t in range(t_start, 0, -1):
# 1. Figure out if the current position was stay or change
# Note (again):
# `emission[J-1]` is the emission at time frame `J` of trellis dimension.
# Score for token staying the same from time frame J-1 to T.
stayed = trellis[t - 1, j] + emission[t - 1, blank_id]
# Score for token changing from C-1 at T-1 to J at T.
changed = trellis[t - 1, j - 1] + emission[t - 1, tokens[j - 1]]
# 2. Store the path with frame-wise probability.
prob = emission[t - 1, tokens[j - 1] if changed > stayed else 0].exp().item()
# Return token index and time index in non-trellis coordinate.
path.append(Point(j - 1, t - 1, prob))
# 3. Update the token
if changed > stayed:
j -= 1
if j == 0:
break
else:
raise ValueError("Failed to align")
return path[::-1]
path = backtrack(trellis, emission, tokens)
# Merge the labels
@dataclass
class Segment:
label: str
start: int
end: int
score: float
def __repr__(self):
return f"{self.label}\t({self.score:4.2f}): [{self.start:5d}, {self.end:5d})"
@property
def length(self):
return self.end - self.start
def merge_repeats(path):
i1, i2 = 0, 0
segments = []
while i1 < len(path):
while i2 < len(path) and path[i1].token_index == path[i2].token_index:
i2 += 1
score = sum(path[k].score for k in range(i1, i2)) / (i2 - i1)
segments.append(
Segment(
transcript[path[i1].token_index],
path[i1].time_index,
path[i2 - 1].time_index + 1,
score,
)
)
i1 = i2
return segments
segments = merge_repeats(path)
# HACK HERE TO GET MANUAL SYLLABLES
# Merge words
def merge_words(segments, separator="|"):
global syllables,syllablei
words = []
i1, i2 = 0, 0
while i1 < len(segments):
#HACK CODE HERE ---------
segs = segments[i1:i2]
syllable = "".join([seg.label for seg in segs])
if i2 >= len(segments) or segments[i2].label == separator or syllable == syllables[syllablei]: #HACK PART syllable == syllables[syllablei]:
if i1 != i2:
segs = segments[i1:i2]
word = "".join([seg.label for seg in segs])
print("'"+word+"'");
score = sum(seg.score * seg.length for seg in segs) / sum(seg.length for seg in segs)
if i2 < len(segments) and segments[i2].label != separator: #HACK IF NOT SEPARATOR WE DON"T INCREMENT BY 1
words.append(Segment(word, segments[i1].start, segments[i2].end, score))
else:
words.append(Segment(word, segments[i1].start, segments[i2 - 1].end, score))
if i2 < len(segments) and segments[i2].label != separator: #HACK IF NOT SEPARATOR WE DON"T INCREMENT BY 1
i1 = i2
i2 = i1
else:
i1 = i2 + 1
i2 = i1
if syllablei < len(syllables)-1:
syllablei+=1
else:
i2 += 1
return words
word_segments = merge_words(segments)
subs = []
last_end = timedelta(seconds=start_time/bundle.sample_rate)
for i,word in enumerate(word_segments):
ratio = waveform.size(1) / (trellis.size(0) - 1)
x0 = int(ratio * word.start)
x1 = int(ratio * word.end)
start = max(timedelta(seconds=start_time + x0 / bundle.sample_rate),last_end)
end = timedelta(seconds=start_time + x1 / bundle.sample_rate )
last_end = start
subtitle = Subtitle(start_index+i, start, end, word.label)
subs.append(subtitle)
print(compose(subs))
return subs
model = whisper.load_model("medium")
audio = whisper.load_audio("video.wav")
transcription = model.transcribe(audio)
# # print the recognized text
segments = transcription["segments"]
print("Transcription complete:")
print(transcription["text"])
print("Starting to force alignment...")
start_index = 0
total_subs = []
for i,segment in enumerate(segments):
text = segment["text"]
audioSegment = AudioSegment.from_wav("video.wav")[segment["start"]*1000:segment["end"]*1000]
audioSegment.export(str(i)+'.wav', format="wav") #Exports to a wav file in the current path.
transcript=text.strip().replace(" ", "|")
transcript = re.sub(r'[^\w|\s]', '', transcript)
transcript = re.sub(r"(\d+)", lambda x: num2words.num2words(int(x.group(0))), transcript)
print(segment["start"])
subs = force_align(str(i)+'.wav', transcript.upper(), start_index, segment["start"])
start_index += len(segment["text"])
total_subs.extend(subs)
CAPTION_FILE = open("caption.srt", "w", encoding="utf-8") #open("caption.srt", "w")
CAPTION_FILE.write(compose(total_subs))
CAPTION_FILE.close()
No comments:
Post a Comment